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Objectives
The primary objective of this analysis was to ascertain, through ●●
an integrated PK/PD model-based approach, what measure  
of change in heart rate (HR) should be considered as  
clinically relevant in phase I trials. Interindividual and  
between-study variability of the circadian variations of  
HR demand a more sophisticated approach than simple  
baseline-correction, when attempting to distinguish drug  
effects from usual changes in HR.

Methods
Placebo and predose hourly average HR data from 24-h holter ●●
monitoring from seven phase I clinical studies were pooled 
(n=405, >700 full days of recordings). The basic mathematical 
model1 consisted of a sum of five cosine functions to replicate 
the circadian variations in (with periods pk of 24, 12, 8, 6, 4.8 
hours, respectively). 

where H denotes HR, HMES the mesor or mean HR, ak the amplitude, 
pk the period and τk the phase shift of the kth cosine function.

Interindividual variability (IIV) was assessed for ●● HMES and ak using 
a log-normal distribution. An example is given for the notional 
structural model parameter P,

whereas IIV for the phase shift τk was found to be normally 
distributed

Residual variability was tested as additive or proportional or both. ●●
Study, sex, and weight were tested during the covariate building ●●
of a non-linear mixed effects model as well as the placebo effect 
compared to predose. Covariates were modeled similarly as the 
IIV with exp(βP) for HMES and ak and additive + βP for τk.
Covariates were first investigated for only the predose data ●●
and later for changes between predose and placebo during the 
treatment period.
Statistical shrinkage in empirical Bayes estimates (EBEs) of model ●●
parameters used for diagnostic purposes was evaluated as 

where shP is shrinkage in model parameter P, SD(ηEBE,P) is the 
standard deviation of the individual EBEs of IIV in parameter P, 
and ωP is the model estimate of the standard deviation in the IIV 
associated with parameter P.

Results
Due to the high number of possible covariates  ●●
(7 studies + 2 genders + weight)*(11 parameters) we 
applied several independent methods to find the optimal  
covariate model for the predose HR data. Monolix3.12 was  
able to run a full covariate model and did not find a significant  
effect of weight (results see Table 1). Xpose43 was used to  
fit a generalized additive model (GAM), which suggested very 
similar covariates as found with the Monolix full covariate  
model. Nonmem VI4 showed large difficulties fitting the 
large model such that a stepwise covariate search was not  
possible with the full data set (analysis of a subset of data  
using studies 1, 2, and 3 led to equivalent covariates as  
presented in Table 1).

Table 1. Covariates with full covariate model in Monolix and GAM using 
Xpose with ST1 as the reference

Sex ST2 ST3 ST4 ST5 ST6 ST7
HMES p* c c* c c* c c
a1 p* c* p* p* p*
τ1 p* p* p* p* p*
a2 p* p* p* p*
τ2 p* p* c* p* c* p*
a3 * * p* p* p*
τ3 * * * * *
a4 p* p* p* p* p *
τ4 p* p* p* p*
a5 p
τ5 p p p
p=statistically significant with p<0.05; c=clinically relevant change (>1 bpm or >0.5 hours), 
but not significant at p<0.05; *=suggested by GAM (a5, τ5 not tested)

The model fit to the HR placebo data using the five cosine  ●●
functions was very good (see Figures 1 and 2). Relative  
standard errors (r.s.e.) for the fixed effects were below 10%  
(except 16% for AP5), whereas the r.s.e. for significant  
covariates was up to 38%. Shrinkage of the individual parameter 
estimates of HMES, a1, τ1, a2, τ2, a3, τ3, a4, τ4, a5, and τ5  
was 2%, 28%, 34%, 50%, 54%, 68%, 100%, 77%, 60%, 100%,  
and 100%, respectively. The log-likelihood test and 
Akaike Information Criterion both supported the use of five  
cosine functions.
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Figure 1. Goodness-of-fit plots for predose fit from Monolix.
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Figure 2. Randomly selected individual fits of predose HR values

Typical HR changes over the day were significantly different  ●●
between studies (see Figure 3). HR over the day ranged 
from approximately 60 to 80 bpm (in a typical male subject).  
Gender differences could be found for the mesor (~6.6% or ~5 bpm  
higher for a female subject), but no statistically significant  
study dependence was noted even though the covariates  
for the studies implied differences of 1.5–3.2 bpm. The placebo 
effect on the mesor was always smaller than this gender  
difference (0.8–6.3% increase).

Study differences
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Figure 3. Typical circadian HR variation for males in the investigated 
studies and gender difference represented using study 1

Study dependence was found on the phase shifts and on the ●●
amplitudes of the cosine functions, and the latter in general  
denoted for changes of less than 2 bpm for the typical subjects. 
Nonetheless, in combination the differences in amplitudes 
and phase shifts lead to a maximum time-wise difference  
between studies of up to 18.9 bpm and a maximal difference 
between genders of more than 11% (or ~8 bpm) in predose  
data. Note that the largest between-study variability occurs  
in afternoon and evening.
The overall variability in the data can be seen in ●● Figure 4,  
showing the predose data values with the typical HR changes  
in male subjects.
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Figure 4. Variability in predose data compared to typical response

The treatment effect in the placebo group was mainly investigated ●●
on the mean HR (or mesor). Using inter-occasion-variability for 
each study day one can see (Figure 5) a slight increase in the 
mesor from days -1 and 0 (predose) to days 1 and later (treatment). 
The actual increase was occurred either within the first treatment 
days or more gradually and was very study dependent. Using a 
stepwise increase between predose and treatment the placebo 
effect was estimated to be 0.8–6.3% as mentioned before. 
Estimation of the linearized Fisher information matrix was not 
possible due to software memory capacities of Monolix3.1, 
therefore no standard errors or log-likelihood estimates could be 
derived for the full model.
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Figure 5. Changes in mean HR for different study days per study (using 
IOV per day)

IOV, Inter-occasion-variability

Conclusions
Overall gender- and study-dependent effects were shown to ●●
influence the circadian changes of HR of the typical subject 
to a greater extent than what is considered to be a clinically 
relevant drug effect. However, not all the effects found to be 
statistically significantly different during model building could 
also be considered clinically relevant, especially a number of 
study-dependent effects on the amplitude parameters.
Due to the high variability of HR over the day and the large ●●
study and gender dependencies, it is recommended to consider 
a model-based approach when estimating any potential drug 
effect compared to baseline and placebo during clinical trials.
The hourly average used to collate the HR data provided a ●●
good estimate of the daily changes in HR, but is unable to 
describe short-term changes. Depending on the modeling 
objective, a finer level of granularity of the data (and thus a 
higher complexity of the model) might be more appropriate.
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